anaconda pip 添加国内加速源 镜像源 提升安装速度

我们在使用anaconda或者pip安装python包的时候经常会遇到类似的错误,如Timeout,或者PackagesNotFoundError: The following packages are not available from current channels。一般这些情况都是由于不可描述原因导致的请求连接异常而不能正常安装我们所需要的包。

我们可以指定anaconda的chanles或者在pip安装某个包时临时指定源;通过添加国内的源来加速安装,以及拓宽对所需包的检索范围。

狗头保佑

1、添加清华镜像(源)

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/

conda config --set show_channel_urls yes

2、添加豆瓣镜像(源)

conda config --add channels https://pypi.douban.com/anaconda/cloud/conda-forge/
conda config --add channels https://pypi.douban.com/anaconda/cloud/msys2/
conda config --add channels https://pypi.douban.com/anaconda/cloud/bioconda/
conda config --add channels https://pypi.douban.com/anaconda/cloud/menpo/
conda config --add channels https://pypi.douban.com/anaconda/cloud/pytorch/

conda config --set show_channel_urls yes

3、删除源

conda config --remove-key channels

4、pip带源安装

可以临时指定安装所需要的源

pip install -i https://pypi.douban.com/simple tensorflow-gpu==1.14

python tsv TSV 文件扩展名是什么文件

在一些经典的机器学习算法实验过程中,一般常见的数据格式会是.tsv和.csv格式。那么TSV扩展名的文件是什么呢?

TSV 是Tab-separated values的缩写,即制表符分隔值。
相对来说CSV,Comma-separated values(逗号分隔值)更常见一些。

TSV与CSV的区别:

1)从名称上即可知道,TSV是用制表符(Tab,’\t’)作为字段值的分隔符;CSV是用半角逗号(’,’)作为字段值的分隔符;

2)IANA规定的标准TSV格式,字段值之中是不允许出现制表符的。

Python对TSV文件的支持:

Python的csv模块准确的讲应该叫做dsv模块,因为它实际上是支持范式的分隔符分隔值文件(DSV,delimiter-separated values)的。
delimiter参数值默认为半角逗号,即默认将被处理文件视为CSV。
当delimiter=’\t’时,被处理文件就是TSV。
http://docs.python.org/library/csv.html

numpy 数组属性 区别于 python list 清仓大甩卖

上篇关于numpy的文章主要介绍了numpy的数据结构,本篇旨在讲解numpy的数组属性,NumPy 数组的维数称为秩(rank),秩就是轴的数量,即数组的维度,一维数组的秩为 1,二维数组的秩为 2。

在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions)。axis=0,表示沿着第 0 轴进行操作,即对每一列进行操作;axis=1,表示沿着第1轴进行操作,即对每一行进行操作。

numpy 数组基本属性

代码撸一撸

import numpy as np

a = np.arange(32)
print(a.ndim)
print("a =", a)

b =[ _ for _ in range(32)]
print("b =", b)

c = a.reshape(2, 4, 4)
print(c.ndim)
print("c =", c)
print("c.shape =", c.shape)
print("c.dtype =", c.dtype)
print("c.itemsize =", c.itemsize)

输出结果:

1
a = [ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 24 25 26 27 28 29 30 31]
b = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]
3
c = [[[ 0  1  2  3]
  [ 4  5  6  7]
  [ 8  9 10 11]
  [12 13 14 15]]

 [[16 17 18 19]
  [20 21 22 23]
  [24 25 26 27]
  [28 29 30 31]]]
c.shape = (2, 4, 4)
c.dtype = int32
c.itemsize = 4

上面的输出结果,我们是可以看到a和b的区别,这也是numpy数组和普通python list的表现形式上的区别,list带逗号分割元素,数组缺没有分隔符。

*知识扩展-Int8,Int16, Int32, Int64有什么区别呢?

计算机的基本的存储单元

  • 位(bit):二进制数中的一个数位,可以是0或者1,是计算机中数据的最小单位。二进制的一个“0”或一个“1”叫一位。
  • 字节(Byte,B):计算机中数据的基本单位,每8位组成一个字节。各种信息在计算机中存储、处理至少需要一个字节。

ASCIIS码: 1个英文字母(不分大小写)= 1个字节的空间
1个中文汉字 = 2个字节的空间
1个ASCII码 = 一个字节
UTF-8编码: 1个英文字符 = 1个字节
英文标点 = 1个字节
1个中文(含繁体) = 3个字节
中文标点 = 3个字节
Unicode编码: 1个英文字符 = 2个字节
英文标点 = 2个字节
1个中文(含繁体) = 2个字节
中文标点 = 2个字节

字(Word):两个字节称为一个字。汉字的存储单位都是一个字。

基本编码字节占用情况

而Int8,Int16,Int32,nt64,后面的数字就代表这个数据类型占据的空间。

Int8, 等于Byte, 占1个字节.
Int16, 等于short, 占2个字节. -32768 32767
Int32, 等于int, 占4个字节. -2147483648 2147483647
Int64, 等于long, 占8个字节. -9223372036854775808 9223372036854775807
这样, 看起来比short,int,long更加直观些!
另外, 还有一个Byte, 它等于byte, 0 - 255.