2022年11月15日
spark stages 并行度 shuffle 宽窄依赖 随笔
spark stages 一个任务集对应的调度阶段;每个Job会被拆分很多组Task,每组任务被称为Stage,也可称TaskSet,一个作业分为多个阶段;Stage分成两种类型ShuffleMapStage、ResultStage。
嗨,无聊么
spark stages 一个任务集对应的调度阶段;每个Job会被拆分很多组Task,每组任务被称为Stage,也可称TaskSet,一个作业分为多个阶段;Stage分成两种类型ShuffleMapStage、ResultStage。
这里的A和B可以存在于各种领域,但一般fail-over特指计算机领域的数据库、应用服务、硬件设备等的失效转移。
failover是redis cluster提供的容错机制,cluster最核心的功能之一。failover支持两种模式:故障failover:自动恢复集群的可用性,人为failover:支持集群的可运维操作
Spark具备很好的机制来保证exactly once的语义,具体体现在数据源的可重放性、计算过程中的容错性、以及写入存储介质时的幂等性或者事务性。exactly once指的是在处理数据的过程中,系统有很好的容错性(fault-tolerance),能够保证数据处理不重不丢,每一条数据仅被处理一次。