我们对文章的内容作了分词处理,把分词后每篇文章的词列表做最原始的横向张开,一次在文章中出现多少次,在分词后的列表中就输出多少次。如下图,列表第一位是文章的唯一标识ID, 后续跟着每篇文章出现的每个词的重复N次。
HashingTF 是一个Transformer,在文本处理中,接收词条的集合然后把这些集合转化成固定长度的特征向量。这个算法在哈希的同时会统计各个词条的词频。因为数据量大的原因,把词hash到有限的空间里,但是一般针对于小数据量的话,直接不用此方法。
用稀疏格式表示为(262144,[15036,19364,47826,83116,97232,121425,148594,155955,178252,213110],[3.0,2.0,2.0,6.0,4.0,2.0,5.0,2.0,3.0,6.0]) 第一个262144表示向量的长度(元素个数),[15036,19364,47826,83116,97232,121425,148594,155955,178252,213110]就是indices数组,[3.0,2.0,2.0,6.0,4.0,2.0,5.0,2.0,3.0,6.0]是values数组 表示向量0的位置的值是3.0,2的位置的值是2.0,以此类推后续…,而其他没有表示出来的位置都是0
密集向量的值就是一个普通的Double数组 而稀疏向量由两个并列的 数组indices和values组成 例如:向量(1.0,0.0,1.0,3.0)用密集格式表示为[1.0,0.0,1.0,3.0]
(1254041,(262144,[15036,19364,47826,83116,97232,121425,148594,155955,178252,213110],[3.0,2.0,2.0,6.0,4.0,2.0,5.0,2.0,3.0,6.0]))
(1254702,(262144,[13250,45738,74579,83816,114706,140294,168038,178252,179286,228860],[6.0,2.0,3.0,2.0,3.0,2.0,4.0,2.0,3.0,2.0]))
(1270204,(262144,[23837,89849,118991,128753,141701,144329,154077,181588,206007,216577],[8.0,9.0,7.0,30.0,6.0,9.0,8.0,8.0,2.0,6.0]))
(1274990,(262144,[1825,47533,66014,72996,128753,137905,176245,230362,246875,261184],[2.0,4.0,2.0,6.0,7.0,2.0,3.0,3.0,5.0,4.0]))
(1275492,(262144,[453,3346,23862,48581,81453,97906,177907,192248,211981,222855],[5.0,7.0,2.0,6.0,7.0,3.0,8.0,4.0,2.0,5.0]))
(1276010,(262144,[24180,37181,38884,83812,139707,170385,183537,186838,210495,252680],[3.0,6.0,6.0,8.0,3.0,4.0,2.0,2.0,6.0,15.0]))
(1284572,(262144,[4080,34822,41345,46525,55782,114461,137175,137700,141004,257853],[5.0,9.0,9.0,12.0,16.0,9.0,20.0,4.0,9.0,19.0]))
(1285584,(262144,[50361,54739,60330,119368,127547,208981,219001,248279,255987,257167],[5.0,3.0,7.0,7.0,3.0,8.0,7.0,6.0,10.0,3.0]))
(1286389,(262144,[85281,89699,118991,133021,165941,179035,193877,224875,243109,255164],[2.0,4.0,3.0,2.0,5.0,3.0,3.0,2.0,4.0,2.0]))
(1305106,(262144,[30697,36373,65307,73404,82006,86639,123217,142848,168038,178252],[3.0,4.0,5.0,11.0,5.0,17.0,19.0,4.0,11.0,5.0]))
(1315406,(262144,[42610,64869,74579,134320,200367,205339,240419,241590,246953,259244],[7.0,6.0,6.0,11.0,6.0,2.0,7.0,5.0,3.0,10.0]))
(1321265,(262144,[38382,39825,48154,48615,156641,189005,191338,201265,216118,245329],[13.0,9.0,4.0,2.0,9.0,6.0,4.0,8.0,7.0,6.0]))
(1338600,(262144,[10344,36515,76239,82006,115775,148514,165030,190556,213678,226409],[8.0,7.0,9.0,3.0,6.0,3.0,25.0,4.0,11.0,3.0]))
(1343798,(262144,[17834,44919,75299,90387,112873,116611,124084,144329,232930,235221],[2.0,8.0,14.0,2.0,12.0,2.0,2.0,15.0,7.0,5.0]))
(1348953,(262144,[6878,15912,27529,32639,55938,129711,145474,200367,215919,232930],[7.0,7.0,5.0,13.0,7.0,14.0,13.0,14.0,17.0,10.0]))
(1349040,(262144,[32887,49573,55355,64662,111523,157281,228604,240842,252200,261899],[2.0,7.0,5.0,3.0,2.0,3.0,3.0,7.0,3.0,3.0]))
(1376022,(262144,[69651,86071,103299,150372,153082,163559,175435,218723,220682,253252],[3.0,6.0,7.0,9.0,7.0,6.0,3.0,6.0,9.0,2.0]))
(1404146,(262144,[17964,45478,98252,119251,146330,170312,192362,203817,215919,232930],[2.0,6.0,6.0,8.0,6.0,6.0,6.0,5.0,10.0,7.0]))
(1423152,(262144,[6878,47048,74579,110350,123974,137905,145474,200367,215919,242312],[3.0,6.0,13.0,11.0,6.0,6.0,9.0,18.0,12.0,2.0]))
(1439223,(262144,[65855,68559,71276,82006,115775,174947,202636,217083,226336,231174],[10.0,21.0,2.0,5.0,11.0,35.0,9.0,25.0,16.0,4.0]))
1270204 [‘开发商’, ‘莆田’, ‘别墅’, ‘府邸’, ‘公寓’, ‘福建延寿山庄酒店管理有限公司’, ‘用地’, ‘藏珑’, ’10’, ‘1’, ‘独栋’, ‘建售’]
1315406 [‘普查’, ‘调控’, ‘时评’, ‘房产税’, ‘房屋’, ‘刚需’, ‘人口’, ‘存量’, ’10’, ‘1’, ‘房价’, ‘地毯式’]
1423152 [‘调控’, ‘房地产’, ‘长效’, ‘限贷’, ‘限购’, ‘蛮劲’, ’10’, ‘限价’, ‘1’, ‘房价’, ‘网民’, ‘楼市’]
1305106 [‘资金’, ‘房产’, ‘全款’, ‘背负’, ‘购房者’, ‘买房’, ‘房子’, ’10’, ‘一身’, ‘1’, ‘怎么’, ‘贷款’]